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Over the past decade, the olefin metathesis reaction has
become one of the most important methods for carbon-
carbon double-bond formation in organic synthesis.1 In
particular, ring-closing olefin metathesis (RCM) has been
widely applied as a key step in constructing cyclic olefins
of many sizes containing ether, ester, amide, or amino groups
in several total syntheses of complex natural products.2

Recently, a few RCM reactions of olefins connected di-
rectly to a heteroatom have been reported, such as enol eth-
ers, enamides, vinyl chlorides, and fluorides.3 Although the
preparation of conjugated amides has been well-investigated,3f

and the ring-closing metathesis of enamines has also been
described,3g the utilization of these methods has been limited
as a result of the low reactivity and the special functional
groups required for these olefin substrates.

In this paper, en route toR-amino acrylamides via RCM
to afford the correspondingR-aminoR,â-unsaturated lactams.
When compared to the reported RCM of nitrogen-substituted
olefins,3g the present method provides for more versatile
lactam moieties, which can be further converted into
structural units that exist in many bioactive molecules. A
3-amino-2-pyridone library was constructed in good yield
using this strategy (Figure 1).

The RCM precursors were synthesized in 60-78% yield,
as shown in Scheme 1, by coupling anR-aminoacrylic acid
6 with the corresponding free amine5 or N-dimethoxybenzyl
(DMB)-protected amine7, employing ethylene 1-ethyl-3-
(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/
HOBt. The acrylic acids6 were obtained using two different
reported methods.4 The DMB-protected amines7 were
synthesized from various amines5 (n ) 0-3) according to
the conventional reductive amination using 2,4-dimeth-
oxybenzaldehyde in the presence of NaBH4 in EtOH.5

We initially attempted to use nonprotected acrylic amides
as substrates to perform the RCM reaction. Unfortunately,
the RCM of 8 was found to be unsuccessful, as shown in
Scheme 2. Using a Grubbs catalyst (either1 or 2) at room
temperature or by refluxing in different solvents, the cy-
clization did not proceed, and only the starting material was
recovered. WhenN-DMB-protected precursors3 were used,

the cyclization proceeded in the presence of 10 mol %
catalyst2 at room temperature in dichloromethane (DCM)
to yield a series of lactams. The results are listed in Table 1.

As can be seen from the data in Table 1, it was realized
that the presence of theN-DMB group is necessary to ensure
the success of this type of RCM reaction and that the size
of the ring plays an important role in the success of the
reaction. Five-, six-, and seven-membered-ring substrates
afforded cyclic products in good yields. Cyclization did not
proceed for the eight-membered-ring substrate, even when
using Grubbs catalyst (either1 or 2) at room temperature or
under reflux in different solvents.

The influence of the R group was also investigated. Both
six-membered-ring substrates reacted smoothly in DCM with
10 mol % Grubbs catalyst2, but for R ) H, substrate3f
afforded cyclic products in a low yield, even with long
reaction times and high temperatures. This may be due to
the precursor3f of the seven-membered ring’s experiencing
decomposition before cyclization. Interestingly, substrate3h,
an acetoxy derivative of3c, afforded a very good yield,

* To whom correspondence should be addressed. Phone:+86-21-
50801313, ext 231. Fax:+86-21-50800721. E-mail: fjnan@mail.shcnc.ac.cn.

Figure 1. The RCM ofR-amino-acrylamide.

Scheme 1.Synthesis of RCM Precursorsa

a Reagents and conditions: (a) 2,4-dimethoxybenzaldehyde/Et3N then
NaBH4; (b) EDC, HOBt, dry DMF,4 Å molecular sieves.

Scheme 2.RCM Reaction of Nonprotected Acrylic Amidesa

a Reagents and conditions: (a) 10 mol % catalyst1, DCM, rt 20 h and
then reflux 5 h; or 10 mol % catalyst2, DCM, r.t. 20 h and then reflux 5
h; or 10 mol % catalyst2, DCE, r.t. 20 h and then reflux 5 h, or 10 mol%
catalyst2, DCE, r.t. 20 h and then reflux 5 h.
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which indicates that the present RCM reaction can tolerate
substitution on the substrate.

The metathesis products synthesized using this method
have considerable potential for a wide range of further
transformations. First, the DMB group can be easily removed
in the presence of trifluoroacetic acid (TFA) or cerium (IV)
ammonium nitrate acetate nitrate (CAN) in good yield6 to
afford the further modifiable deprotected products9. Second,
modification of the six-membered-ring lactam will result in
functionalized 3-amino lactams12, which are considered to
be constrained surrogates of dipeptides.7 Another potential
successful transformation is the dehydrogenation of the six-
membered-ring products by treatment with DDQ8 (2,3-

dichloro-5,6-dicyano-1,4-benzoquinone) (Scheme 3). The
resulting 2-pyridone structural unit has been found in several
bioactive compounds, such as amrinone11,9 an inhib-
itor of cyclic guanosine monophosphate (cGMP)-inhibited
cyclic adenosine monophosphate (cAMP) phosphodiesterase
(PDE), and the recently discovered 2-pyridone tissue factor
VIIa inhibitor 1310 (Figure 2). Using this method, we have
synthesized a sublibrary of 2-pyridone, which can be
converted further to form tissue factor VIIa inhibitors
(Scheme 4). Therefore, the present method provides a new
potential synthesis route and approach to further derivatives,
as well as a small molecule library of 3-amino lactams.

The construction of 3-amino-2-pyridone was investigated
to further demonstrate the utility of the present method.
Employing the strategy used for compound10, the substituted
N-DMB amide14was subjected to the ring-closing metathe-
sis (RCM) reaction, followed by a treatment using the same
reaction system with DDQ. The 3-amino-2-pyridone product
was obtained in a high yield, as shown in Scheme 4.

The detailed reaction procedure is listed in Scheme 4. The
substituted DMB-protected amine14, which was obtained
by treatment of the corresponding imine with allyl bromide
and Zn powder in the presence of a catalytic amount of
titanium (IV) chloride,11 was converted to the RCM precursor
15 by coupling with 2-tert-butoxycarbonylaminobutyl-2-
enoic acid employing the usual method. The derivatives of
2-pyridone16 can be synthesized via the RCM reaction of
15 followed oxidation by DDQ. The product16 and its
precursor15 are listed in Table 2.12

As shown by the data in Table 2, the RCM/DDQ
oxidation proceeded smoothly to afford good-to-excellent
yields in a “one-pot” reaction. The 6-position-substituted

Scheme 3.Some Applications of the Present RCM-Type Reactiona

a Reagents and conditions: (a) TFA/DCM r.t. 62%; (b) DDQ/DCM r.t. 84%.

Table 1. RCM Reactions of Different Substrates

Figure 2. Some bioactive compounds including 2-pyridone struc-
tural unit.

Scheme 4.Preparation of the 2-Pyridone Sublibrarya

a Reagents and conditions: (a) 2-tert-butoxycarbonylamino-butyl-2-enoic
acid, EDC, HOBt, dry DCM, 4-Å molecular sieves, 60-73%; (b)2, DCM;
(c) DDQ, overall yield 51-84% from 15.
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groups varied from electron-rich to electron-deficient aro-
matic rings and also from long-chain alkyl groups to hindered
alkyl groups. The most interesting entry is entry 8: the RCM
reaction proceeded in a very high regioselectivity, as the
terminal double bond showed a higher reactivity than the
aromatic vinyl group. This provided one more double bond
for further modifications.

In this work, a solution-phase synthesis is described for
the construction of a 2-pyridone library. TheN-dimethoxy-
benzyl (DMB) protection of the parent pyridone is easily
removed and facilitates further N-modification. In addition,
it may also facilitate solid-phase syntheses, making it

amenable for general use in the synthesis of medicinal
chemistry libraries in an automated platform.

In conclusion, we have reported the first RCM reactions
of R-amino acrylamide to generateR-aminoR,â-unsaturated
lactams. We have developed a new and simple procedure to
construct an exploratory sublibrary of pyridone in anticipation
of its bioactivity. We are now investigating variations on
this methodology as well as its application to the total
synthesis of natural products.
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